Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Chemosensors ; 11(2):149, 2023.
Article in English | ProQuest Central | ID: covidwho-2267936

ABSTRACT

Conventional enzyme-based continuous glucose sensors in interstitial fluid usually rely on dissolved oxygen as the electron-transfer mediator to bring electrons from oxidase to electrode while generating hydrogen peroxide. This may lead to several problems. First, the sensor may provide biased detection results owing to fluctuation of oxygen in interstitial fluid. Second, the polymer coatings that regulate the glucose/oxygen ratio can affect the dynamic response of the sensor. Third, the glucose oxidation reaction continuously produces corrosive hydrogen peroxide, which may compromise the long-term stability of the sensor. Here, we introduce an oxygen-independent nonenzymatic glucose sensor based on water splitting-assisted electrocatalysis for continuous glucose monitoring. For the water splitting reaction (i.e., hydrogen evolution reaction), a negative pretreatment potential is applied to produce a localized alkaline condition at the surface of the working electrode for subsequent nonenzymatic electrocatalytic oxidation of glucose. The reaction process does not require the participation of oxygen;therefore, the problems caused by oxygen can be avoided. The nonenzymatic sensor exhibits acceptable sensitivity, reliability, and biocompatibility for continuous glucose monitoring in hypoxic environments, as shown by the in vitro and in vivo measurements. Therefore, we believe that it is a promising technique for continuous glucose monitoring, especially for clinically hypoxic patients.

2.
Vaccines (Basel) ; 10(12)2022 Dec 09.
Article in English | MEDLINE | ID: covidwho-2155416

ABSTRACT

Safe and effective vaccines for Corona Virus Disease 2019 (COVID-19) can prevent the virus from infecting human populations and treat patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this study, we discuss the inhibitory abilities of primary and booster vaccine-induced antibodies inhibitory ability toward the SARS-CoV-2 wild-type strain, as well as B.1.1.7, B.1.351, P.1, B.1.617.2, and B.1.1.529. We confirmed these antibodies had the strongest inhibitory effects on the wild-type strain and cross-inhibition activities against other mutant strains after two inactivated vaccine doses. However, the B.1.351, B.1.617.2 and B.1.1.529 mutants exhibit antibody resistance in the vaccine serum. Antibodies induced by homologous inactivated vaccines (n = 92) presented more effective inhibition against tested SARS-CoV-2 strains (p < 0.0001), especially B.1.351, B.1.617.2, and B.1.1.529 mutant strains, which had strong immune escape characteristics. In addition, a heterologous booster vaccination (n = 50) of a protein subunit vaccine ZifiVax (ZF2001) significantly restored humoral immune responses and even showed an increasing response against wild-type, B.1.351, B.1.617.2, and B.1.1.529 than homologous inactivated vaccines. Our analysis of the humoral immune response elicited by the different vaccine regimens, including inhibiting antibodies, indicated that a booster, whether homologous or heterologous, could be essential for achieving greater efficacy against SARS-CoV-2.

SELECTION OF CITATIONS
SEARCH DETAIL